Exercise 1.

(a) Find the domain of the function $f(x)=\sqrt{2-x}+\ln (x-1)$.
(b) Sketch the graph of the function $f(x)=\ln (-x)$ and state the domain of the function.
(c) Sketch the graph of the function $f(x)=e^{3+x}-1$ and find the x-intercept and the y-intercept.

Exercise 2. Use the very definition of the derivative (i.e. $f^{\prime}(a)=\lim \ldots$) to compute the derivative of $f(x)=\frac{1}{x+1}$ at $x=2$.
Exercise 3. Find the vertical and horizontal asymptotes of $f(x)=\frac{2 x^{3}-2 x}{(x-1)\left(x^{2}-5 x+6\right)}$.
Exercise 4. For what value of a is the function $f(t)=\left\{\begin{array}{cl}\frac{\sqrt{t^{2}+3}-3}{t^{2}-6} & \text { if } t \neq \sqrt{6}, \\ a & \text { if } x=\sqrt{6}\end{array}\right.$ continuous?
Exercise 5. (a) Find the equation of the tangent line to $f(x)=x^{1 / 4}$ at $x=10000$. Hint: $10000^{1 / 4}=10$.
(b) Use part (a) to obtain an approximate value of $10100^{1 / 4}$.

